「偶然」の統計学

デイヴィッド J ハンド, 松井 信彦 / 早川書房
(14件のレビュー)

総合評価:

平均 3.6
1
7
6
0
0
  • 直観 vs. 確率

    P71『確率はほかのどれより直観に反する性質をもつ数学分野として知られている。著名な数学者が足をすくわれるほどだ』 「誕生日問題」を始めとして、多くの実例を挙げて説明。有り得なさそうなことが実は有って当然なんだという事を、数字を持って納得させてくれる。 「それはジーン・ディクソン効果だよ」なんて思わず言ってみたくなる。続きを読む

    投稿日:2016.06.07

ブクログレビュー

"powered by"

  • うどんが好き

    うどんが好き

    訳者あとがきによれば、正真正銘の確率・統計のプロが、途方もなく起こりそうもない出来事(宝くじに連続して当たる、雷に連続して当たる)が、なぜ、よりにもよって次々と起きるのかをほぼ数式なしで説き明かすもの。そしてその言葉に偽りはない。
    「不可避の法則」、「超大数の法則」、「選択の法則」、「確率てこの法則」、「近いは同じの法則」を軸に確率の原理からそれに欺かれがちな心理バイアスまで幅広く説明している。楽しく統計リテラシーが身につくのでぜひ。
    ただし、数式を用いないために却って説明が面倒になっている部分もありそう。
    続きを読む

    投稿日:2019.12.26

  • hinoya

    hinoya

    人間の色眼鏡からは多大なる偶然に見えることも客観的に分析すれば、そうでもないよ、というお話でした。理性の眼で冷静に物事を見ることの大切さを教わりました。ありがとう。

    投稿日:2019.10.16

  • dekadanna

    dekadanna

    ありえない偶然と思った現象は大数の法則から行って必然なのだということを統計的に説明してくれる本。色々な事例が出てきて面白い。ロトを2回もあたった人とか、ニューヨークとロンドンとインドのテロ発生時にすべてその場にいた夫妻とか、ありえねぇーと思うような事例が出てきて、興味深かった。2700万ドルにまだ上がった、ロトを総当たりで700万ドルかけて当てたという話も実際にあった話として面白かった。続きを読む

    投稿日:2018.11.12

  • raulreader

    raulreader

    「偶然」だの「奇跡」だの、という言葉で表現される事象が、一体確率的にどんなものなんですかね?ということを説明してくれたお話。

    投稿日:2016.08.22

  • headshrink

    headshrink

    このレビューはネタバレを含みます

    ものすごく珍しい、そんなのありえない、と思える出来事もよくよく考えてみたらそんなに珍しいことでもなく、説明がつく、ということについて。

    我々が生きていくうえではボレルの法則に基づくべきだが、著者が「ありえなさの原理」と呼ぶ5つの法則のため、実際には確率が過小評価されやすい。

    10^10光年のかなたで電子を一個取り除いたら、1億分の1秒後に地球上ので酸素分子の振る舞いがすっかりかわるとか、明らかな間違いと思われる記載が散見され、その他の説明も強引なところが多く、すんなり頭に入ってこない。

    ・ボレルの法則:確率が十分に低い事象は起こりえないものとして行動すべき。100万分の1の事故を恐れて家に引きこもるのは合理的でない

    ・迷信とは、因果関係がないところに因果関係があると信じこむことで、例えばクラップスをする時にサイコロにキスしてから投げると6のゾロ目が出やすいなど。儀式と望ましい結果に偶然の結びつきがいくつかあると、その結びつきを強化しない出来事が多数発生しても儀式は確立され維持される。因果関係があるならば、そこには必ず時間的な前後関係があるが、時間的な前後関係があるからというだけで因果関係があるとは限らない

    ・コインを100回投げて、表が60回出る確率は2.8%だが、コインが歪んでいて表が出る確率が0.50でなく0.52であった場合、60回表が出る確率は6.6%となる。

    1.不可避の法則:起こりうるすべての結果を一覧にしたら、そのうちどれかが必ず起こる。ただし、どれが起こるかはわからない。宝くじは誰かに必ず当たる。

    2.超大数の法則:十分に大きな数の機会があれば、どれほどとっぴな物事も起こっておかしくはない。(ちなみに大数の法則は、大きなサンプルの平均値は小さなサンプルの平均値よりゆらぎの幅が少ない、ということで全く別物)
    機会が本当はたくさんあるのに少なそうに見えることがあり、確率を低めに見積もりやすい。同じ誕生日の人がいる確率を50%以上にするためには23人で足りるという例など。

    3.選択の法則:事後に選べば実際よりも確率は高く見える。矢を射って、当たったところに的を描く。大災害の後や911の後で、ことが起こる前に色々前兆があったと主張したり。自然選択はうまくいった変異を残す(選択の法則)ことと超大数の法則の組み合わせで精緻なメカニズムを作り上げている。
    著者によると、平均への回帰もこのカテゴリに属する。平均点50点の試験で40−60点のグループと20−80点のグループがあれば、最高点をとるのは後者のグループである可能性が高い。しかし、二度目の試験では最高得点でない可能性が高い。

    4.確率てこの法則
    確率の見積もりが間違っていると、極めて珍しいと思っていたことが実はそうでもない。
    正規分布を想定すると、10σの現象は1.3X10^23分の一だが、世の中に正規分布をとる事象はあまりない。これが正規分布でなく実際はコーシー分布であった場合、32分の1となり、比較的ありえる現象となる。マーケットの暴落など。

    5.近いは同じの法則
    十分に似ている事象を同じものとみなすこと。
    同じ時期に同じ町を旅行していたら偶然の一致と思うかもしれないが、同じ県だったりしてもそう思う。聖書の暗号でHLPEという綴を発見してHELPとの一致と認めていたら、こういう暗号がたくさん見つかる。

    レビューの続きを読む

    投稿日:2016.07.20

  • sou (08thse)

    sou (08thse)

    シンクロニシティやロトの当選番号の連続など、ありえないようなことでも実際に考えてみると現実的、といった、確率に関するお話。
    少し固めですが、現実の例を交えているので、読みにくくはなかったです。

    投稿日:2016.04.07

Loading...

クーポンコード登録

登録

Reader Storeをご利用のお客様へ

ご利用ありがとうございます!

エラー(エラーコード: )

本棚に以下の作品が追加されました

本棚の開き方(スマートフォン表示の場合)

画面左上にある「三」ボタンをクリック

サイドメニューが開いたら「(本棚アイコンの絵)」ボタンをクリック

このレビューを不適切なレビューとして報告します。よろしいですか?

ご協力ありがとうございました
参考にさせていただきます。

レビューを削除してもよろしいですか?
削除すると元に戻すことはできません。